Статистическое прогнозирование продаж
Самый простой и распространенный из статистических методов — экстраполяция. Суть его заключается в использовании исторических данных предыдущих периодов для определения общей тенденции и ее «продления в будущее». При этом подразумевается, что все основные факторы, влияющие на исследуемый показатель, продолжат свое действие в обозримом будущем и определенная тенденция останется в силе на ближайший период.

Этот метод хорошо подходит для прогнозирования таких показателей, как объем рынка, величина складских запасов, уровень развития производства. Однако в отношении продаж его применение ограничивается главным образом зрелыми рынками со сложившимся балансом сил и низкой вероятностью качественных изменений, которые могли бы повлиять на ситуацию. Любая неожиданность, нарушающая прежний ход вещей, резко понижает точность прогнозов, основанных на экстраполяции. Как известно, всегда можно с 75%-ной вероятностью сказать, что завтра будет такая же погода, как сегодня, однако у нас за окном дожди то и дело сменяются ясной погодой, а за зимой следует весна.

Еще одно ограничение, налагаемое на применение экстраполяции, заключается в необходимости получения полной и достоверной информации о прошлых событиях. Например, розничные торговые компании используют для прогнозирования данные, полученные со сканеров штрих-кодов на кассах, которые с исчерпывающей точностью сообщают, какие товары были проданы и в каком количестве.

Подобное утверждение не относится к фокус-группам, которые также используются при прогнозировании. Один из основополагающих принципов экспертной оценки заключается в независимости мнений экспертов друг от друга. В фокус-группах, наоборот, все участники ищут единое решение, обмениваясь мнениями, и их конечный вариант совсем необязательно будет объективным.

Наконец, на предварительных этапах прогнозирования, когда необходимо уточнить рыночную ситуацию или просчитать действия конкурентов, могут использоваться ролевые игры.
Например, в 2001 году американская компания Philco, производящая хозяйственные товары, применила этот метод при подготовке к запуску нового механизма стимулирования ритейлеров, основанного на инновационной для этого рынка системе скидок, зависящих от объемов продаж. Успех этого начинания зависел прежде всего от содействия со стороны менеджеров магазинов, в которых продавалась продукция компании. Руководство Philco параллельно с опросом экспертов провело ряд ролевых игр в десяти группах, участники которых играли роли ритейлеров.

Как выяснилось уже после успешного введения системы в действие, игры показали более высокую точность прогнозирования действий менеджеров магазинов, чем экспертные оценки. Большинство специалистов высказалось против нового механизма, в то время как при проведении ролевых игр успех правильно предсказали восемь групп из десяти.
Существуют приемы, повышающие точность экстраполяции при недостаточно стабильной обстановке. В частности, один из них состоит в использовании взвешенных показателей, когда данные за последние периоды имеют большее значение, чем старые. При наличии большого массива информации применяется сглаживание, чтобы уменьшить влияние случайных факторов и сезонных колебаний.

При всех своих недостатках экстраполяционные методы легко автоматизируются и поэтому часто применяются в тех случаях, когда требуется быстро составить большое число прогнозов, например, при предсказании объема продаж в крупной компании, продающей продукцию сотен и тысяч наименований. Кроме того, экстраполяцию всегда можно использовать параллельно с другими методами прогнозирования, применяя числовые ряды в качестве первого приближения.

В частности, экстраполяция может сочетаться с экспертными оценками. Если на рынке происходят какие-либо серьезные изменения: принятие поправок к законодательству, резкое снижение цены конкурентом, появление качественно нового товара в той же группе и т. п., компании обращаются к специалистам, чтобы те оценили влияние подобных изменений на рыночные тенденции. Экспертами часто выступают менеджеры по продажам самой фирмы, которые корректируют статистические прогнозы с учетом своего знания рынка.
На этом базируется метод прогнозирования на основе закономерностей (rule-based forecasting), который заключается в учете рыночных факторов, способных нарушить стройность числовых рядов. Многие менеджеры на основании своего прежнего опыта могут сказать, какие события должны оказать значительное влияние на объемы продаж и каким примерно образом, а какими можно пренебречь и оставить в силе прогнозы, полученные методом экстраполяции. Такие расчеты могут быть формализованы в виде компьютерных моделей — так создаются экспертные системы, в которых компьютерные программы корректируют прогнозы, полученные путем экстраполирования, на основании закономерностей, определенных специалистами.

Обращение к прошлому опыту предполагает и метод прогнозирования, основанный на аналогиях. Если событие, которое может оказать существенное влияние на рынок и уменьшить точность экстраполяционных предсказаний, уже случалось ранее, компания может предположить, что и в этот раз оно окажет аналогичное воздействие, и соответствующим образом скорректировать прежние прогнозы. Впрочем, для того чтобы этот метод оказался более-менее точным, требуется близкое совпадение с прошедшими случаями, что в действительности происходит редко.

В последние годы большую популярность в западных странах получили различные эконометрические модели. Их создатели считают, что смогли определить зависимость объема продаж от тех или иных факторов, например, цены или рекламной активности. Предполагается, что с учетом прогнозируемых значений переменных, взятых по отдельности или в комплексе, модель выдаст наиболее вероятное изменение уровня продаж.
Как показывает опыт, эконометрические методы могут оказаться полезными в тех случаях, когда в ближайшее время на рынке ожидаются значительные изменения ситуации, причем такие, влияние которых на объемы продаж известно и доказано на практике.

Самое сложное при использовании моделей — применение существующих теорий к текущим условиям и установление взаимосвязей между продажами и влияющими на них факторами в данном конкретном случае. Кроме того, пока не представляется возможным формализовать такие бесспорно значимые факторы, как действия конкурентов или изменения моды.

Применимость эконометрических методов ограничивается случаями, когда:
существует сильная причинно-следственная связь между объемом продаж и влияющими на них факторами;
эта связь известна или может быть достаточно точно определена;
в течение периода прогнозирования должно произойти существенное изменение «факторов влияния»;
эти изменения могут быть достаточно точно предсказаны или, по крайней мере, можно безошибочно оценить, как именно они должны повлиять на объемы продаж.
Если хотя бы одно из этих условий не выполняется, ценность эконометрических моделей становится весьма сомнительной. Хотя, конечно, они могут обеспечить достаточно неплохой прогноз на стабильном рынке, где не происходит никаких серьезных изменений, но в подобном случае практически аналогичный результат можно получить и с помощью обычной экстраполяции, что значительно проще и дешевле.

Применение сложного и дорогостоящего метода прогнозирования вовсе не гарантирует точности оценок. По данным американского специалиста Скотта Армстронга из University of Pennsylvania и его новозеландского коллеги из University of Auckland Родерика Броди, в настоящее время не существует доказанных свидетельств повышенной точности новейших методов мультивариантного прогнозирования, основанного на изучении временных серий, а также значительной пользы электронных экспертных систем, созданных по принципу нейронных сетей, в которых компьютеры соединены между собой, как нейроны в мозгу человека. Подобные системы действительно могут многократно повысить скорость сложных расчетов, но пока не созданы теории, на основании которых можно точно определить влияние тех или иных факторов на объемы продаж.